Pemograman Linear



Pemograman Linear

Pemrograman Linier disingkat PL merupakan metode  matematik dalam mengalokasikan sumber daya yang terbatas untuk mencapai suatu tujuan seperti memaksimumkan keuntungan dan meminimumkan biaya. PL banyak diterapkan dalam masalah ekonomi, industri, militer, social dan lain-lain. PL berkaitan dengan penjelasan suatu kasus dalam dunia nyata sebagai suatu model matematik yang terdiri dari sebuah fungsi tujuan linier dengan beberapa kendala linier.
Contoh :
1.    Seorang pengrajin menghasilkan satu tipe meja dan satu tipe kursi. Proses yang dikerjakan hanya merakit meja dan kursi. Dibutuhkan waktu 2 jam untuk merakit 1 unit meja dan 30 menit untuk merakit 1 unit kursi. Perakitan dilakukan oleh 4 orang karyawan dengan waktu kerja 8 jam perhari. Pelanggan pada umumnya membeli paling banyak 4 kursi untuk 1 meja. Oleh karena itu pengrajin harus memproduksi kursi paling banyak empat kali jumlah meja. Harga jual per unit meja adalah Rp 1,2 juta dan per unit kursi adalah Rp 500 ribu.
Formulasikan kasus tersebut ke dalam model matematiknya !
Jawab :
Solusi :Hal pertama yang harus dilakukan adalah mengidentifikasi tujuan, alternatif keputusan dan sumber daya yang membatasi. Berdasarkan informasi yang diberikan pada soal, tujuan yang ingin dicapai adalah memaksimumkan pendapatan. Alternatif keputusan adalah jumlah meja dan kursi yang akan diproduksi. Sumber daya yang membatasi  adalah waktu kerja karyawan dan perbandingan jumlah kursi dan meja yang harus diproduksi (pangsa pasar ).
Kita definisikan :
x1 = jumlah meja yang akan diproduksi
x2 = jumlah kursi yang akan diproduksi
Model umum Pemrograman Linier kasus di atas adalah :
Fungsi tujuan :
Maksimumkan z = 1.2 x1 + 0.5 x2
Kendala :
2x1 + 0.5 x2 ≤ 32
x1/x2 ≥ ¼ atau 4x1≥ x2 atau 4x1 – x2 ≥ 0
x1 , x2 ≥ 0
2.  Seorang peternak memiliki 200 kambing yang mengkonsumsi 90 kg pakan khusus setiap harinya. Pakan tersebut disiapkan menggunakan campuran jagung dan bungkil kedelai dengan komposisi sebagai berikut :
Bahan
Kg per kg bahan
Kalsium
Protein
Serat
Biaya (Rp/kg)
Jagung
0.001
0.09
0.02
2000
Bungkil kedelai
0.002
0.60
0.06
5500
Kebutuhan pakan kambing setiap harinya adalah paling banyak 1% kalsium, paling sedikit 30% protein dan paling banyak 5% serat.
Formulasikan permasalahan di atas kedalam model matematiknya !
Solusi :Hal pertama yang harus dilakukan adalah mengidentifikasi tujuan , alternative keputusan dan sumber daya yang membatasi. Berdasarkan informasi yang diberikan pada soal, tujuan yang ingin dicapai adalah meminimumkan biaya pembelian bahan pakan. Alternative keputusan adalah jumlah jagung dan bungkil kedelai yang akan digunakan. Sumber daya yang membatasi adalah kandungan kalsium, protein dan serat pada  jagung dan bungkil kedelai, serta kebutuhan jumlah pakan per hari.
Kita definisikan :
x1 = jumlah jagung yang akan digunakan
x2 = jumlah bungkil kedelai yang akan digunakan
Model umum Pemrograman linier kasus di atas oleh karenanya adalah :
Fungsi tujuan : minimumkan z = 2000 x1 + 5500 x2
Kendala :
x1 + x2 = 90
0.001 x1 + 0.002 x2 ≤ 0.9
0.09 x1 + 0.6 x2 ≥ 27
0.02 x1 + 0.06 x2 ≤ 4.5
x1, x2 ≥ 0
3.  Suatu bank kecil mengalokasikan dana maksimum Rp 180 juta untuk pinjaman pribadi dan pembelian mobil satu bulan kedepan. Bank mengenakan biaya suku bunga per tahun 14% untuk pinjaman pribadi dan 12% untuk pinjaman pembelian mobil. Kedua tipe pinjaman itu dikembalikan bersama dengan bunganya satu tahun kemudian. Jumlah pinjaman pembelian mobil paling tidak dua kali lipat dibandingkan pinjaman pribadi. Pengalaman sebelumnya menunjukkan bahwa 1% pinjaman pribadi merupakan kredit macet.
          Formulasikan masalah di atas kedalam   bentuk model matematiknya !
Solusi : Hal pertama yang harus dilakukan adalah mengidentifikasi tujuan, alternatif keputusan dan sumber daya yang membatasi. Berdasarkan informasi yang diberikan pada soal, tujuan yang ingin dicapai adalah memaksimumkan pendapatan bunga dan pengembalian pinjaman. Alternatif keputusan adalah jumlah alokasi pinjaman pribadi dan pinjaman mobil. Sumber daya yang membatasi adalah jumlah alokasi anggaran untuk kredit bulan depan dan perbandingan antara jumlah kredit pribadi dan pembelian mobil.
Kita definisikan :
x1 = jumlah anggaran untuk pinjaman pribadi
x2 = jumlah anggaran untuk pinjaman pembelian mobil.
Model umum Pemrograman Linier kasus diatas adalah :
Fungsi tujuan : Maksimumkan z = (0.14 – 0.01) x1 + 0.12 x2
Kendala :
x1 + x2 ≤ 180
x2 ≥ 2x1 atau -2x1 + x2 ≥ 0
x1, x2 ≥ 0
4.  Suatu pabrik perakitan radio menghasilkan dua tipe radio, yaitu HiFi-1 dan HiFi-2 pada fasilitas perakitan yang sama. Lini perakitan terdiri dari 3 stasiun kerja. Waktu perakitan masing-masing tipe pada masing-masing stasiun kerja adalah sebagai berikut :

Stasiun kerja
Waktu perakitan per unit (menit)
HiFi-1
HiFi-2
1
6
4
2
5
5
3
4
6
               Waktu kerja masing-masing stasiun kerja adalah 8 jam per hari. Masing-masing stasiun kerja membutuhkan perawatan harian selama 10%, 14% dan 12% dari total waktu kerja (8 jam) secara berturut-turut untuk stasiun kerja 1,2 dan 3.
     Formulasikan permasalahan ini kedalam model matematiknya !

     Solusi : Alternatif keputusan adalah : radio tipe HiFi-1 (x1) dan radio tipe HiFi-2 (x2). Tujuannya adalah memaksimumkan jumlah radio HiFi-1 dan HiFi-2 yang diproduksi. Sumber daya pembatas adalah : jam kerja masing-masing stasiun kerja dikurangi dengan waktu yang dibutuhkan untuk perawatan.
     Waktu produktif masing-masing stasiun kerja oleh karenanya adalah :
     Stasiun 1 : 480 menit – 48 menit = 432 menit
     Stasiun 2 : 480 menit – 67.2 menit = 412.8 menit
     Stasiun 3 : 480  menit – 57.6 menit = 422.4 menit.
     Model umum pemrograman linier :
     Maksimumkan z = x1 + x2
     Kendala :
     6x1 + 4x2 ≤ 432
     5x1 + 5x2 ≤ 412.8
     4x1 + 6x2 ≤ 422.4
     x1, x2 ≥ 0

5.    Dua produk dihasilkan menggunakan tiga mesin. Waktu masing-masing mesin yang digunakan untuk menghasilkan kedua produk dibatasi hanya 10 jam per hari. Waktu produksi dan keuntungan per unit masing-masing  produk ditunjukkan table di bawah ini :
Produk
Waktu produksi (menit)
Mesin 1
Mesin 2
Mesin 3
Mesin 4
1
10
6
8
2
2
5
20
15
3
          Formulasikan permasalahan di atas ke dalam model matematiknya !
Solusi :
Alternatif keputusan adalah : produk 1 (x1) dan produk 2 (x2). Tujuannya adalah memaksimumkan keuntungan Sumber daya pembatas adalah : jam kerja masing-masing mesin.
Model umum pemrograman linier :
Maksimumkan z = 2x1 + 3x2
Kendala :
10 x1 + 5 x2 ≤ 600
6 x1 + 20 x2 ≤ 600
8 x1 + 15 x2 ≤ 600
x1, x2 ≥ 0
6.    Empat produk diproses secara berurutan pada 2 mesin. Waktu pemrosesan dalam jam per unit produk pada kedua mesin ditunjukkan table di bawah ini :
Mesin
Waktu per unit (jam)
Produk 1
Produk 2
Produk 3
Produk 4
1
2
3
4
2
2
3
2
1
2
Biaya total untuk memproduksi setiap unit produk didasarkan secara langsung pada jam mesin. Asumsikan biaya operasional per jam mesin 1 dan 2 secara berturut-turut  adalah $10 dan $5. Waktu yang disediakan untuk memproduksi keempat produk pada mesin 1 adalah 500 jam dan mesin 2 adalah 380 jam. Harga jual per unit keempat produk secara berturut-turut adalah $65, $70, $55 dan $45. Formulasikan permasalahan di atas ke dalam model matematiknya !
Solusi :
Alternatif keputusan adalah : jumlah produk 1,2,3 dan 4 yang dihasilkan. Tujuannya adalah memaksimumkan keuntungan. Perhatikan, keuntungan diperoleh dengan mengurangkan biaya dari pendapatan.
Keuntungan per unit dari produk 1 = 65 – (10x2  + 3x5) = 30
Keuntungan per unit dari produk 2 = 70 – (10x3 + 2x5) = 30
Keuntungan per unit dari produk 3 = 55 – (10x4 + 1x5) = 10
Keuntungan per unit dari produk 4 = 45 – (10x2 + 2x5) = 15
Sumber daya pembatas adalah waktu kerja yang disediakan kedua mesin.
Definisikan :
x1 : jumlah produk 1 yang dihasilkan
x2 : jumlah produk 2 yang dihasilkan
x3 : jumlah produk 3 yang dihasilkan
x4 : jumlah produk 4 yang dihasilkan
Model umum pemrograman linier :
Maksimumkan z = 30 x1 + 30x2 + 10 x3 + 15 x4
Kendala :
2x1 + 3 x2 + 4x3 + 2x4 ≤ 500
3x1 + 2 x2 + x3 + 2x4 ≤ 380
x1, x2,  x3 , x4   ≥ 0
  1. Suatu perusahaan manufaktur menghentikan produksi salah satu produk yang tidak menguntungkan. Penghentian ini menghasilkan kapasitas produksi yang menganggur (berlebih). Kelebihan kapasitas produksi ini oleh manajemen sedang dipertimbangkan untuk dialokasikan ke salah satu  atau ke semua produk yang dihasilkan (produk 1,2 dan 3). Kapasitas yang tersedia pada mesin yang mungkin akan membatasi output diringkaskan pada table berikut :
Tipe mesin
Waktu yang dibutuhkan produk pada masing-masing mesin (jam)
Waktu yang tersedia (jam per minggu)
Produk 1
Produk 2
Produk 3
Mesin milling
9
3
5
500
Lathe
5
4
0
350
Grinder
3
0
2
150
Bagian penjualan mengindikasikan bahwa penjualan potensial untuk produk 1 dan 2 tidak akan melebihi laju produksi maksimum dan penjualan potensial untuk produk 3 adalah 20 unit per minggu. Keuntungan per unit masing-masing produk secara berturut-turut adalah $50, $20 dan $25.
Formulasikan permasalahan diatas kedalam model matematik !
Solusi :
Alternatif keputusan :
Jumlah produk 1 yang dihasilkan = x1
Jumlah produk 2 yang dihasilkan = x2
Jumlah produk 3 yang dihasilkan = x3
Tujuannya adalah : memaksimumkan keuntungan Sumber daya pembatas adalah :
Jam kerja mesin milling per minggu : 500 jam
Jam kerja mesin llathe per minggu : 350 jam
Jam kerja mesin grinder per minggu : 150 jam.
Model matematikanya adalah :
Maksimumkan z = 50 x1 + 20 x2 + 25 x3
Kendala :
9x1 + 3 x2 + 5x3 ≤ 500
5x1 + 4 x2 ≤ 350
3x1 + 2x3 ≤ 150
x3 ≤ 20
x1, x2,  x3 g  ≥ 0

Setelah kita dapat mendefinisikan soal permasalahan dalam bentuk model formula matematik barulah kita selesaikan masalah tersebut .

Kita ambil contoh nomor 5

         Model umum pemrograman linier :
Maksimumkan z = 2x1 + 3x2
Kendala :
10 x1 + 5 x≤ 600
6 x+ 20 x2 ≤ 600
8 x1 + 15 x2 ≤ 600
x1, x≥ 0

1. Model Grafik
    Persamaan I
    x1  = 0 ==> 10 x1 + 5 x2  = 600        x= 0 ==> 10 x1 + 5 x = 600
                                    5 x = 600                                    10 x1  = 600
                                       x = 120                                         x= 60

             Persamaan II
              x1  = 0 ==>6 x+ 20 x2 = 600         x= 0 ==> 6 x+ 20 x2 = 600
                                          20 x2 = 600                                       6 x= 600
                                               x2 = 30                                            x= 100
                                    
             Persamaan III
              x1  = 0 ==>8 x1 + 15 x2 = 600        x= 0 ==> 8 x1 + 15 x2 = 600 
                                          15 x2 = 600                                      8 x1  = 600
                                              x2 = 40                                           x1  = 75
             Gambar Grafiknya :
            
               Pers I dan II
             10 x1 + 5 x = 600  x20  200 x1 + 100 x = 12000
              6 x+ 20 x2 = 600  x5      30 x1  +  100 x2 =  3000  -
                                                                    170x= 9000
                                                                         x= 52,9
        
                                                          10 x1 + 5 x = 600
                                                    10 (52,9) + 5 x = 600
                                                                      5 x = 71
                                                                         x = 14,2


            Pers II dan III
            6 x+ 20 x2 = 600  x8    48 x+ 160 x2 = 4800
            8 x1 + 15 x2 = 600  x6    48 x1 + 90 x2  = 3600 -
                                                              70 x= 1200
                                                                   x= 17, 14
                                                 6 x+ 20 x2 = 600 
                                          6 x+ 20(17,14) = 600 
                                                            6 x= 257,2
                                                               x= 42,8
          
           Dari tabel di atas didapatkan nilai max untuk x1 , x2 adalah ( 0 , 120 ) dengan nilai   max 360






Komentar

Postingan populer dari blog ini

Kumpulan Soal Data Flow Diagram (DFD)

Sinopsis Canola ( 2016 )

Soal UAS PTSI (Pengantar Teknologi Sistem Informasi ) Gunadarma